Повышенное барометрическое давление

Самое важное по теме: повышенное барометрическое давление с комментариями практикующих врачей. Все вопросы можете задать после статьи.

Человек подвергается действию пониженного барометрического давления при подъеме на высоту в летательных (негерметических) аппаратах, при восхождении на горы, в барокамерах. По мере,подъема на высоту понижаются барометрическое давление, температура воздуха, напряжение кислорода (рО2) в воздухе, увеличивается космическая радиация.

Болезнетворное действие в этих условиях оказывают и сам фактор понижения барометрического давления, и понижение напряжения кислорода в воздухе, и космические и ультрафиолетовые лучи.

Болезнетворное действие понижения барометрического давления имеет три основных механизма:

Пузырьки водяных паров наиболее легко образуются в рыхлых тканях (например, жировой) и в крови. Применение специальных защитных приспособлений, увеличивающих давление на поверхность тела, исключает возникновение высотной тканевой эмфиземы. При рекомпрессии такая эмфизема быстро исчезает.

Пониженное напряжение кислорода в атмосферном воздухе. По мере подъема на высоту падает напряжение кислорода во вдыхаемом и альвеолярном воздухе и соответственно снижается процент насыщения гемоглобина кислородом (табл. 10).

Нет тематического видео для этой статьи.
Видео (кликните для воспроизведения).

Изображение - Повышенное барометрическое давление proxy?url=http%3A%2F%2Fspravr.ru%2Fsites%2Fdefault%2Ffiles%2Fstyles%2Fmedium%2Fpublic%2Ffield%2Fimage%2Ft10

Возникающие при этом гипоксемия и гипоксия сопровождаются развитием высотной и горной болезней.

Собственно высотная болезнь (или болезнь авиаторов, воздушная болезнь, аэродонтальгия) возникает при быстром подъеме в летательных аппаратах без кислородных приборов на большую высоту. Наиболее частые симптомы: эйфория, быстрое наступление утомления, головная боль, расстройства высшей нервной деятельности, одышка, тахикардия, доходящие иногда до состояния периодического дыхания и перебоев работы сердца — аритмий. Особенно опасно для летной службы нарушение нервной деятельности. При снижении насыщения крови кислородом до 75—80% усиливается возбудительный процесс в коре головного мозга. По мере дальнейшего развития гипоксии (до 43—60% насыщения крови кислородом) происходит ослабление возбудительного процесса и прогрессивное нарастание тормозного.

Высота 4—5 км считается границей бескислородного полета. Высоту 6 км часто называют «критическим порогом», за которым до 8 км простирается «критическая зона». На этой высоте симптомы высотной болезни выражены особенно резко (вплоть до потери сознания). Пребывание на высоте выше 8 км без предварительной адаптации и вдыхания кислорода приводит к смертельному исходу (см. табл. 11).

Изображение - Повышенное барометрическое давление proxy?url=http%3A%2F%2Fspravr.ru%2Fsites%2Fdefault%2Ffiles%2Fstyles%2Fmedium%2Fpublic%2Ffield%2Fimage%2Ft11_0

Горная болезнь возникает при восхождении в горы. Кроме гипоксии, при этом большую роль играют и добавочные факторы: физическое утомление, охлаждение, ионизация воздуха, ультрафиолетовые лучи. В зависимости от тренировки первые симптомы горной болезни у разных лиц появляются на высоте от 1000 до 3000 м (фаза компенсации), далее возникает фаза декомпенсации (собственно болезнь), которая, как правило, развивается на высоте 4000 м.

В фазе компенсации гипоксемия рефлекторно (через хеморецепторы каротидного синуса, дуги аорты и др.) стимулирует мобилизацию компенсаторных реакций организма — одышку, тахикардию, некоторое повышение артериального давления и перераспределение крови, относительный эритроцитоз (выход эритроцитов из депо крови).

На больших высотах — в фазе декомпенсации — развивается гипоксемия, замедляются окислительные процессы в тканях, возникает газовый алкалоз с гипокапнией. Гипокапния является следствием усиленного выведения СО2 легкими при гипервентиляции и уменьшения образования СО2 в тканях (окисление жиров и углеводов не доходит до конечных этапов — углекислоты и воды).

Гипокапния и алкалоз являются факторами, снижающими возбудимость дыхательного центра; угнетается функция и других центров продолговатого мозга, что в конечном итоге приводит к угнетению и высших отделов центральной нервной системы. Смерть при горной и высотной болезнях наступает от паралича дыхательного центра в результате гипокапнии.

Непосредственной причиной развития горной и высотной болезней является падение рО2 во вдыхаемом воздухе. Впервые это было показано в классических опытах Поля Бера (1878): понижение давления в барокамере до 210 мм рт. ст. вызывало у животных симптомы горной болезни и агонию. Если же камеру заполнить чистым кислородом или карбогеном (95% О2 и 5% СО2) и довести разрежение в камере до 200 мм рт. ст. и ниже, горная болезнь у животных не возникает, так как рО2 во втором опыте примерно в 5 раз больше, чем в обычном атмосферном воздухе. Это положение подтверждается и практической возможностью значительного повышения потолков переносимости, или «критических зон» высоты, при пользовании кислородными приборами.

Болезнетворному действию повышенного атмосферного давления человек подвергается при кессонных, водолазных работах, в практике работы подводного флота. С опусканием в глубину на каждые 10 м давление повышается на 1 атм, так что человек на глубине 10 м подвергается действию 2 атм и т. д.

Болезнетворное влияние повышенного атмосферного давления (баротравма) складывается из нескольких моментов.

Непосредственное действие повышенного давления на организм. При переходе от нормального к повышенному давлению могут наблюдаться вдавление барабанной перепонки, сжатие кишечных газов и некоторое опущение диафрагмы, сдавление кожных и других периферических сосудов и отсюда повышенное кровенаполнение внутренних органов. Баротравма легких возникает при внезапном повышении давления в них, превышающем окружающее давление на 80—90 мм рт. ст., и состоит в разрыве легочной ткани и кровеносных сосудов. При этом воздух из альвеол проникает в просвет разорванных капилляров — развивается воздушная эмболия.

Сатурация (насыщение крови и тканей газом). Последствия сатурации живых тканей определяются биологическими эффектами, вызываемыми растворенными газами, в основном азотом и кислородом.

Читайте так же:  Большой пульс при нормальном давлении

Степень сатурации азота зависит от свойств тканей — жировая ткань, белое вещество мозга, желтый костный мозг растворяют в 5 раз больше азота, чем кровь. Насыщение организма азотом может достигнуть значительных величин. Так, у человека весом 70 кг в случае пребывания в течение часа в кессоне под давлением в 5 атм накапливается 4 л азота.

Нет тематического видео для этой статьи.
Видео (кликните для воспроизведения).

Растворенный в нервной ткани азот вызывает вначале наркотический, затем токсический эффект: головные боли, головокружение, галлюцинации, нарушения координации движений. Во избежание подобных осложнений рационально использование кислородно-гелиевых смесей (растворимость гелия в нервной ткани значительно ниже).

Токсический эффект растворенного кислорода проявляется при небольшом давлении (0,7—0,8 добавочных атмосфер) симптомами раздражения легких — острой гиперемией, экссудацией, отеком легких, иногда спазмом бронхов. При увеличении давления до 3 атмосфер могут возникнуть зрительные галлюцинации, общие судороги, потеря сознания.

Десатурация. Возникает при декомпрессии, т. е. переходе из области повышенного давления в нормальную атмосферу. Размер образующихся при десатурации газовых пузырьков зависит от величины давления воздуха, под которым находится человек. Так, при декомпрессии организма из давления в 1,25 атм (и меньше) газовая эмболия сосудов не возникает, так как диаметр образующихся газовых пузырьков меньше 8 р. (диаметр капилляра 8—12 р.). Эти пузырьки легко транспортируются, и избыток азота (отчасти и кислорода) легко удаляется через легкие и кожу. При ускоренной декомпрессии из больших глубин пузырьки газов в сосудах достигают размеров, больших просвета капилляра, и вызывают закупорку их — газовую эмболию (рис. 8). Пузырьки газа скапливаются также в полостях, содержащих жидкость: перитонеальной, синовиальной, реже в цереброспинальной, перикардиальной, в эндолимфе лабиринта, в тканях с большим коэффициентом растворения азота — жире, костном мозге, белом веществе спинного и головного мозга.

Изображение - Повышенное барометрическое давление proxy?url=http%3A%2F%2Fspravr.ru%2Fsites%2Fdefault%2Ffiles%2Fstyles%2Fmedium%2Fpublic%2Ffield%2Fimage%2F08_1

Болезнетворный эффект определяется в основном пузырьками азота, так как он, будучи в газообразном состоянии индифферентным, не усваивается организмом, а в количественном отношении его значительно больше, чем кислорода. Образования пузырьков кислорода в тканях и тканевых жидкостях почти не происходит, так как он быстро связывается кровью и потребляется организмом. Не наблюдается также выделения пузырьков СО2, так как содержание его в воздухе ничтожно мало (0,03—0,05%), а содержание в крови регулируется буферными системами организма и остается постоянным.

Старт космической ракеты

Повреждение органа слуха и легких

Взлет реактивного самолета

Порог болевого ощущения

Уровень, выше которого ощущается боль

Тяжелые грузовики, железнодорожный транспорт

[3]

Отбойный молоток, мотоцикл

Опасность повреждения органа слуха

Интенсивное уличное движение

Громкая речь, автомобиль (внутренний шум)

Обычная речь, шум шагов

Шум воды из крана

Тихая квартира днем, читальный зал

Шепот, тиканье часов

Шелест листвы, зимний лес в безветренную погоду

Едва слышимые звуки

Болезнетворное действие шума определяется его громкостью и частотной характеристикой (наибольшую вредность приносят высокочастотные шумы). Постоянный шум — шум, интенсивность которого меняется во времени не более чем на 5 дБ. Нормально допустимым уровнем постоянного шума считается 40–50 дБ (уровень обычной человеческой речи). Вредная для здоровья граница громкости — 80 дБ. В зонах с громкостью звука свыше 135 дБ даже кратковременное пребывание запрещено. Известен случай, когда во время концерта группы «Pink Floyd» (120 –140 дБ) в озере, расположен­ном рядом с открытой концертной площадкой, всплыла оглушенная рыба.

Длительный звук громкостью 155 дБ вызывает тяжелейшие на­рушения жизнедеятельности человека; громкость 180 дБ является для него смертельной. Некоторые африканские племена убивали приговоренных барабанным боем и криками.

Различают специфическое и неспецифическое действие шума на организм человека.

Специфическое действие шума — нарушение функции слухового анализатора, вследствие длительного спазма звуковоспринимающего аппарата, приводящего к нарушению обменных процессов и как следствие — к дегенеративным изменениям в окончаниях преддверно-улиткового нерва и клетках кортиевого органа. Повреждающее действие шума более выражено у лиц пожилого возраста, при аномалиях строения и заболеваниях органа слуха. Сильное кратковременное оглушение (контузия) может вызвать временную потерю слуха.

Неспецифическое действие шума:

поступлением возбуждения в кору больших полушарий головно­го мозга. На начальных этапах развивается запредельное торможение центральной нервной системы с нарушением уравновешенности и подвижности процессов возбуждения и торможения. В дальнейшем возникает истощение нервных клеток и, как следствие, повышенная раздражительность, эмоциональная неустойчивость, ухудшения памяти, снижения внимания и работоспособности;

возбуждение гипоталамуса, которое реа­лизуется по типу стресс-реакции.

[2]

при поступлении возбуждения в спинной мозг происходит переключение его на центры вегетативной нервной системы, что вызывает изменение функций многих внутренних органов.

В результате длительного воздействия интенсивного шума раз­вивается шумовая болезнь — общее заболевание организма с преи­мущественным нарушением органа слуха, центральной нервной и сердечно-сосудистой систем, органов желудочно-кишечного факта.

Ультразвук — неслышимые человеческим ухом упругие волны, частота которых превышает 20 кГц. Давление звука в уль­тразвуковой волне может меняться в пределах ±303,9 кПа (3 атм).

Биологический эффект ультразвука обусловлен:

механическим действием: отрицательное давление способствует образованию в клетках микроскопических полостей с последующим быстрым их захлопыванием, что сопровождается интенсивными гидравлическими ударами и разрывами — кавитацией.

физико-химическим действием: кавитация приводит к деполяризации и деструкции молекул, вызывает их ионизацию, что активирует химические реакции, нормализует и ускоряет процессы тканевого обмена.

Читайте так же:  Ремонт приборов артериального давления

тепловым действием ультразвука связано в основном с поглощением акустической энергии. При интенсивности ультразвука 4 Вт/см 2 и воздействии его в течение 20 с температура тканей на глубине 2–5 см повышается на 5–60 °С.

Положительный биологический эффект в тканях вызывает ультразвук малой (до 1,5 Вт/см 2 ) и средней (1,5–3 Вт/см 2 ) интенсивности. Ультразвук большой интенсивности (3–10 Вт/см 2 ) оказывает повреждающее действие: нарушает капиллярный кровоток, вызывает деструктивные изменения в клетках, приводит к местному перегреву тканей. Нервная система наиболее чувствительна к действию ультразвука: избирательно поражаются периферические нервы, нарушается передача нервных импульсов в области синапсов. В результате возникают вегетативные полиневриты и парезы, повышается порог возбудимости слухового, преддверно-улиткового и зрительного анализаторов, расстройство сна, раз­дражительность, повышенная утомляемость.

В отличие от местной компрессии устойчивость организма к общему равномерному барометрическому давлению очень велика. Организм человека может переносить давление свыше 6 МПа без выраженных механических повреждений.

Общей характерной особенностью воздействия повышенного атмосферного давления на организм является временный, обратимый характер наступающих изменений в деятельности ряда органов и систем организма.

Представляется целесообразным подчеркнуть, что при всплытии более опасным является прохождение малых глубин, так как именно на них может наблюдаться резкое относительное увеличение внутрилегочного давления. У ныряльщиков и спортсменов, использующих подводную маску и дыхательную трубку, баротравмы легких никогда не бывает, так как при нырянии объем воздуха в легких уменьшается, а при всплытии на поверхность снова достигает исходной величины. При всплытии, например, с аквалангом опасна задержка на глубине 10 м от поверхности. Это приводит к резкому повышению давления вследствие увеличения объема воздуха в легких, которое сопровождается различными по масштабам разрывами тканей дыхательных путей — бронхов и альвеол, приводящими к возникновению кровоизлияний, пневмотораксу, газовой эмболии, интерстициальной и подкожной эмфиземе.

Наибольшую опасность для жизни пострадавшего представляет поступление воздуха в просвет разорвавшихся кровеносных сосудов малого круга кровообращения и возникновения артериальной газовой эмболии. Пузырьки воздуха, в основном азота, закупоривают многие кровеносные сосуды легких, головного мозга, сердца и других органов, приводя к общему кислородному голоданию организма. Наиболее частыми признаками баротравмы легких бывают потеря сознания, расстройства дыхания и кровообращения. Баротравмы легких возможны также у больных при даче интратрахеального наркоза и проведении искусственной вентиляции легких с использованием различных аппаратов.

Баротравму следует отличать от декомпрессионной болезни, в патогенезе которой образование газовых пузырьков в крови и других тканях происходит без повреждения легких и сосудов.

При исследовании трупов лиц, погибших от баротравмы легких, необходимо извлечь из грудной клетки легкие и сердце с перевязанными артериями и венами, входящими и выходящими из него, надуть легкие под водой и определить места разрывов легочной ткани по выходящим пузырькам воздуха. Подтверждением диагноза баротравмы легких является обнаружение газовых эмболов в сосудах легких, сердца, головного мозга. Концевой характер коронарных сосудов способствует эмболизации и появлению расстройств в деятельности сердца вплоть до инфаркта и остановки сердца.

При осуществлении водолазных и кессонных работ, исследовании морских глубин, а также в медицине широко используется кислород под повышенным давлением. Острая интоксикация возникает при сравнительно кратковременной экспозиции кислорода под давлением 2,5—3 МПа и выше. Поражению наиболее подвержена ЦНС, поэтому такую форму обозначают как нейротоксическую, мозговую или судорожную (кислородная эпилепсия, острый оксидоз и др.). У детей отмечается большая резистентность к сжатому кислороду и для них менее характерна судорожная форма отравления. Хроническая кислородная интоксикация возможна при длительном (свыше 2 ч), нередко повторном воздействии малых (1 — 1,5 МПа) давлений кислорода. Ведущим признаком при этом являются изменения легких — легочная форма (кислородная пневмония, легочный ожог, подострый оксидоз).

Таким образом, при дыхании кислородом под давлением 3 МПа и выше наиболее вероятно развитие нейротоксической формы интоксикации, а при давлении от 2 МПа и ниже — легочной. При давлении от 2 до 3 МПа может возникнуть и то, и другое поражение.

Ранними функционально-морфологическими проявлениями действия кислорода под повышенным давлением на органы и ткани являются снижение содержания гликогена и изменение активности окислительно-восстановительных ферментов в паренхиматозных клетках. В сердце (миокард), печени, легких, почках — под действием гипербарической оксигенации возникают определенные морфофункциональные изменения со стороны паренхимы, стромы и сосудов. В первую очередь страдают стенки сосудов, особенно капилляров, что приводит к повышению их проницаемости и нарушению микроциркуляции в органах; развивается межклеточный отек и как результат его — нарушение питания паренхиматозных клеток. Наблюдается застойное полнокровие вен и капилляров.

При резком переходе от повышенного давления к нормальному из-за создавшегося при этом перенасыщения организма инертными газами возникают декомпрессионные нарушения. Газы, растворенные в крови и жидкостях организма, выделяясь из них, образуют свободные газовые пузырьки — газовые эмболы. Закупорка сосудов пузырьками газов приводит к появлению различных болезненных симптомов, что получило название кессонной болезни (декомпрессионная болезнь).

При кессонной болезни газовые пузырьки в свободном состоянии могут образовываться не только в кровеносных и лимфатических сосудах, но и в суставных полостях, желчи, цереброспинальной жидкости, очень часто и в огромном количестве в жировой ткани и др. Растворимость азота в жире организма в 5 раз выше, чем в крови, поэтому жировые вещества являются специфическими резервуарами для растворенного индифферентного газа. Миелиновая оболочка нервных волокон также является резервуаром для растворенного азота.

Читайте так же:  Резкий скачок давления и пульса

При исследовании трупов лиц, погибших от кессонной болезни, обнаруживают признаки газовой эмболии, выявляемой посредством соответствующей пробы. В правой половине сердца и венах находят кровяные свертки с мелкими пузырьками газов. Их скопление в подкожной клетчатке приводит к образованию подкожной эмфиземы. Наличие газа может быть диагностировано рентгенографически; этим же методом выявляют пузырьки газов в сонных артериях. Экспертизу кессонной болезни всегда необходимо проводить комплексно и с участием технических специалистов для выяснения характера аварийной ситуации, нарушений мер профилактики, химического состава вдыхаемых газовых смесей, неисправности оборудования и др.

В отличие от местной компрессии устойчивость организма к общему равномерному барометрическому давлению очень велика. Организм человека может переносить давление свыше 6 МПа без выраженных механических повреждений.

Общей характерной особенностью воздействия повышенного барометрического давления на организм является временный, обратимый характер наступающих изменений в деятельности ряда органов и систем организма.

С влиянием на организм повышенного барометрического давления человек встречается чаще всего при глубоких подводных погружениях. При погружении в воду, прежде всего, дополнительно к атмосферному действует гидростатическое давление, которое увеличивается по мере погружения. Установлено, что гидростатическое давление по сравнению с атмосферным на глубине 10 м удваивается, 20 м утраивается и т. д. Повышенное гидростатическое давление снижает чувствительность кожных рецепторов к травмирующим воздействиям. Ранения под водой нередко оказываются незамеченными и обнаруживаются пострадавшими только при всплытии на поверхность. Наибольшему смещению подвергаются ткани, ограничивающие полости и органы, содержащие воздух (легкие, желудочно-кишечный тракт, среднее ухо и др.).

24.2. Действие повышенного барометрического давления

Баротравма диагностируется при действии повышенного ба­рометрического давления на организм и наблюдается в практике водолазных, кессонных работ и в подводном спорте. Установле­но, что гидростатическое давление по сравнению с атмосфер­ным на глубине 10 м удваивается, 20 м — утраивается и т.д.

Резкие перепады давления возникают при быстром погруже­нии в воду и всплытии, при неисправности газовых дыхатель­ных аппаратов. Они сопровождаются увеличением объема воз­духа в легких, разрывом тканей дыхательных путей, приводящих к кровоизлияниям, попаданию воздуха в плевральные полости (пневмотораксу), к газовой эмболии (закупорке сосудов возду­хом) из-за поступления воздуха в просвет разорвавшихся крове­носных сосудов. Пузырьки воздуха разносятся в сосуды головного мозга, сердца, легких. Происходят потеря сознания, рас­стройство дыхания и кровообращения.

При вскрытии трупов лиц, погибших от баротравмы, обна­руживают увеличенные в объеме, пестрые от кровоизлияний легкие; кровоизлияния в слизистой оболочке дыхательного тракта, в просвете которого (в трахеях, бронхах) — жидкая и свернувшаяся кровь. При микроскопическом исследовании об­наруживают в ткани легких разрывы мелких бронхов, альвео­лярных перегородок, кровоизлияния.

Диагностировать воздушную эмболию до вскрытия трупа можно путем рентгенографии области сонных артерий и сердца, а при вскрытии — специальной пробой, прокалывая сердце под водой, а также «плавательной пробой» — установление пузырь­ков воздуха в сосудистом сплетении головного мозга.

У оставшихся в живых после газовой эмболии людей наблю­даются осложнения в виде воспаления легких, очаговых размяг­чений головного мозга, тромбоза кровеносных сосудов различ­ных органов с последующим омертвением этих участков.

Декомпрессионная болезнь отличается от баротравмы. Ее причиной является возникновение газовых пузырьков в крови и других тканях без повреждения сосудов, а лишь вследствие нарушения правильного режима при подъеме из глубин и кессонов.

Повышенное давление оказывает влияние не только на ор­ганизм само по себе, но и влияет на газовые смеси, которыми дышит человек. Эти газовые смеси в указанных условиях при­обретают отравляющее или наркотическое воздействие. Отрав­ление может произойти азотом, углекислым газом, а также и кислородом.

При резком переходе от повышенного давления к нормаль­ному, из-за создающегося перенасыщения организма инертны­ми газами, возникают декомпрессионные нарушения: раство­ренные в крови и жидкостях организма газы, выделяясь из них, образуют свободные пузырьки — газовые эмболы, которые за­купоривают сосуды, вызывая различные болезненные расстрой­ства (кессонная болезнь).

Меры профилактики кессонной болезни — постепенный подъем на поверхность, поочередное вдыхание газовых смесей. Развитие декомпрессионной болезни сопровождается голово­кружением, тошнотой, затрудненностью дыхания, потливостью, перебоями в работе сердца, затем наступает потеря сознания и даже смерть в результате поражения центральной нервной сис­темы и расстройства кровообращения.

При исследовании трупов лиц, погибших от кессонной (де­компрессионной) болезни, выявляются признаки газовой эмбо­лии. Применяя специальную пробу, обнаруживают воздух в пра­вой половине сердца. Скопление газа в подкожно-жировой клетчатке приводит к образованию подкожной эмфиземы.

Экспертизу кессонной болезни необходимо проводить комиссионно, привлекая технических специалистов для выяснения характера аварии, химического состава газрвых смесей, неисправности оборудования.

Следователи должны знать и такую особенность при рас­смотрении декомпрессионной болезни — возможность смерти от недостатка годного для дыхания воздуха или отравления ядо­витыми газами при взрывных работах, действия высокой или низкой температуры, перегревания воздуха в кессоне, электро­травмы, состояния здоровья пострадавшего и его возраста.

Глава 8. Повреждающее действие изменений барометрического давления

Читайте так же:  Почему повышается давление у человека ночью причины

Человек подвергается действию пониженного барометрического давления (гипобарии) при полетах в негерметических летательных аппаратах, при восхождении в горы, в специальных барокамерах. Незначительное снижение барометрического давления обычно не сказывается на состоянии человека, хотя при этом возможны некоторые колебания давления газов в замкнутых и полузамкнутых полостях тела (барабанной полости, придаточных полостях носа и лобных пазухах, в желудке и кишечнике). Степень расширения газов и относительное увеличение давления их в полостях тела значительно возрастают с подъемом на высоту. Так, на высоте 6 км объем газов увеличивается в 2,15 раза, а на высоте 10 км – в 3,85 раза. Давление газов на рецепторы соответствующих полостей вызывает ощущение боли, которая в тяжелых случаях приводит к утрате трудоспособности и даже к потере сознания.

При значительной степени гипобарии на высоте более 9000 м (барометрическое давление 225 мм рт. ст) возможна газовая эмболия пузырьками газа (преимущественно азота), выходящими из тканей в результате понижения растворимости газов при понижении давления. Пузырьки газа проникают в капилляры и разносятся с кровью по организму, вызывая эмболию сосудов. Особенно опасна эмболия коронарных и мозговых сосудов. На высоте 19 000 м и выше (барометрическое давление 47 мм рт. ст.) образование пузырьков газа столь интенсивно, что они не успевают уноситься кровью и накапливаются в тканях, возникает тканевая и подкожная эмфизема. Накопление газов в моче, слюне создает впечатление “закипания” их. Подкожная эмфизема и “закипание” особенно резко выражены при взрывной декомпрессии, когда гипобария наступает очень резко, например в экспериментах при “подъеме” животных в барокамере на высоту более 20 км в течение нескольких секунд. Если произвести быструю компрессию, т. е. “опускание” животных на исходный уровень, пузырьки газа рассасываются, подкожная эмфизема проходит.

Понижение барометрического давления сопровождается падением парциального напряжения кислорода в атмосферном и альвеолярном воздухе, соответственно снижается и процент насыщения гемоглобина крови кислородом (табл. 9).

Уменьшение содержания O2 в крови (гипоксемия) приводит к последующей гипоксии – кислородному голоданию тканей. К гипоксии особенно чувствительны нервные клетки и хеморецепторы сосудов – каротидного клубочка и дуги аорты. Раздражение этих рецепторов гипоксической кровью стимулирует дыхательный центр, сосудодвигательный и другие вегетативные центры. Возникают одышка, некоторое повышение артериального давления, относительный эритроцитоз, возбуждение корковых клеток (эйфория и пр.). Однако гипервентиляция легких способствует выведению из организма СО2 – гипокапнии и возникновению газового алкалоза. Гипокапния и алкалоз являются факторами, снижающими возбудимость дыхательного центра, дыхание урежается, может появиться периодическое дыхание типа Чейна – Стокса и Биота. Угнетаются функции и других центров продолговатого мозга и высших отделов мозга – эйфория и возбуждение заменяются угнетением, быстрой утомляемостью, нарушением ассоциативных связей и пр. Прогрессирующие гипокапния и алкалоз завершаются параличом дыхательного центра.

Непосредственной причиной изменений, возникающих на высоте (горная или высотная болезнь), является падение р02 во вдыхаемом воздухе. Впервые это было доказано в классических опытах Поля Бера (1878): понижение давления в барокамере до 210 мм рт. ст. вызывало у животных симптомы “горной болезни” и агонию. Если же камеру заполнить чистым кислородом или карбогеном (95% О2 и 5% СO2) и довести разрежение в барокамере до 200 мм рт. ст. и ниже, горная болезнь у животных не возникает, так как рO2 во втором опыте примерно в 5 раз больше, чем в обычном атмосферном воздухе. Это положение подтверждается и практической возможностью значительного повышения потолков переносимости или “критических” зон высоты при пользовании кислородными приборами.

Болезнетворному действию повышенного барометрического давления (гипербарии) человек подвергается при водолазных и кессонных работах, в практике подводного флота и в специальных барокамерах. При погружении в воду на каждые 10,3 м давление увеличивается на 1 атм, так что человек на глубине 10 м подвергается действию 2 атм (или одной избыточной атмосферы).

[1]

Повреждающее действие гипербарии проявляется прежде всего при переходе из нормального к повышенному давлению – компрессии. При быстрой компрессии может возникнуть вдавление барабанной перепонки, что при непроходимости евстахиевой трубы становится причиной сильных болей в ушах, возможны даже разрывы барабанной перепонки. Гипербария вызывает сжатие кишечных газов. В результате сдавления кожных и других периферических сосудов увеличивается кровенаполнение внутренних органов.

Наиболее важным последствием гипербарии является повышение растворимости газов в крови и тканях. Растворимость азота зависит от свойств тканей: жировая ткань, белое вещество мозга, желтый костный мозг растворяют в 5 раз больше азота, чем кровь. Растворенный в нервной ткани азот вызывает вначале наркотический, затем токсический эффект – появляются головные боли, головокружение, галлюцинации, нарушения координации движений. Во избежание подобных осложнений в водолазной практике в газовых смесях азот заменяют инертным газом гелием. Растворимость гелия в нервной ткани значительно меньше и он не оказывает какого-либо эффекта на живые ткани. Возможностью увеличивать растворенную фракцию кислорода в крови пользуются в клинической практике с терапевтической целью при необходимости повышения кислородной емкости крови.

Гипербарическая оксигенация – вдыхание кислорода под повышенным давлением – создает перенасыщение организма кислородом – гипероксию. В норме кислородная емкость крови составляет 20,3 об.%. из которых 20 об.% кислорода связаны с гемоглобином, 0,3% кислорода находится в растворенном состоянии.

Читайте так же:  Приступы давления и пульса

При дыхании чистым кислородом из альвеол вытесняется азот и рO2 в альвеолярном воздухе достигает 670 мм рт. ст. вместо 100 мм рт. ст в норме (при дыхании воздухом). Вдыхание чистого кислорода под давлением в 2, 3 и 4 атм дает повышение рO2 в альвеолах соответствено до 1433, 2193 и 2953 мм рт. ст.

Количество кислорода, растворенного в плазме крови, прямо пропорционально рO2 в альвеолах. Повышение давления вдыхаемого O2 на 1 атм приводит к дополнительному растворению в 100 мл крови еще 2,3 мл O2. Вдыхание кислорода под давлением в 3 атм приводит к дополнительному растворению 6 об.% кислорода, что соответствует артериовенозной разнице в покое. При дыхании кислородом под давлением в 3 атм оксигемоглобин почти не диссоциирует, так как даже без участия гемоглобина кислородная емкость крови является вполне достаточной для поддержания жизни. Поэтому при давлении O2 в 3 атм большинство тканей может целиком удовлетворить свою потребность в кислороде только за счет его физически растворенной фракции. Исключение представляет только миокард, где артериовенозная разница составляет 12 об. %.

Гипербарическую оксигенацию используют с терапевтической целью при патологических состояниях, когда гемоглобин в значительной степени исключен из процесса дыхания, например при массивных кровопо-терях, отравлениях с образованием карбогемоглобина, метгемоглобина и сульфгемоглобина, при уменьшении объема циркулирующей крови, уменьшении скорости кровотока и т. п.

Однако избыток O2 в тканях может оказать и токсическое действие, на что указывал еще В. В. Пашутин. Токсическое действие O2 зависит не только от избыточного давления, но и от индивидуальной чувствительности человека к гипероксии. Поэтому назначая больному гипербарическую окситерапию, нужно помнить о возможном токсическом эффекте.

Механизм действия гипероксии. Начальные реакции организма в гипероксической среде имеют приспособительное значение. К ним относятся: повышение рO2 в артериальной крови приводит к уменьшению возбуждения хеморецепторов сосудов, ослаблению импульсации с них в вегетативные центры ствола мозга. По этой причине замедляется дыхание и сердечный ритм, уменьшается объем легочной вентиляции, систолический и минутный объем сердца, кровь депонируется в паренхиматозных органах, объем циркулирующей крови уменьшается. Приспособительные реакции направлены на предотвращение возможного токсического действия избыточного растворенного кислорода.

Кислородное отравление, если оно возникает, проявляется в основном в двух формах-легочной и судорожной. Легочная форма характеризуется раздражением верхних дыхательных путей – возникает гиперемия, набухание слизистых оболочек дыхательных путей, ощущение жжения и сухости во рту, боль за грудиной, сухой кашель, трахеобронхит.

Судорожная форма может начинаться вегетативными нарушениями (тахикардия, тошнота, головокружение), могут быть парестезии, локальные мышечные подергивания, затем возникают генерализованные тонические и клонические судороги, протекающие как эпилептический приступ.

Токсическое действие кислорода на клетку, по-видимому, связано с угнетением дыхательных ферментов, в частности содержащих SH-гpyппы, и с накоплением перекисей липидов, вызывающих повреждение клеточных структур. Чрезмерное повышение рO2 в клетке приводит к нарушению синтеза макроэргических фосфорных соединений и даже к образованию свободных радикалов, наподобие действия ионизирующей радиации.

При переходе из области повышенного барометрического давления в область нормального атмосферного давления при декомпрессии растворимость газов в крови уменьшается, в тканях и кровеносных сосудах накапливаются пузыри газа. Если диаметр образующихся газовых пузырьков меньше 8 мкм, т. е. меньше просвета капилляров, они легко транспортируются и избыток азота, отчасти и кислорода, удаляется через легкие. При ускоренной декомпрессии из больших глубин образуются более крупные пузырьки, превышающие диаметр капилляров, и тогда возникает газовая эмболия. Эмболы скапливаются также в полостях, содержащих жидкости – перитонеальной, суставной и т. п., а также в тканях с высоким коэффициентом растворения азота – белом веществе мозга, костном мозге, жире. Эмболия азотом обусловливает характерные для декомпрессионной болезни симптомы – мышечные и суставные боли, судороги и другие нарушения функции нервной системы.

Накопления пузырьков кислорода в тканях и жидкостях почти не происходит, так как O2 быстро связывается гемоглобином крови и потребляется организмом. Не образуются также и пузырьки СO2, так как содержание его в воздухе мало (0,03-0,05%), а содержание в крови регулируется буферными системами организма и остается очень постоянным.

Источники


  1. Болезни сердечно-сосудистой системы. Алгоритмы дифференциальной диагностики, лечения, врачебно-трудовой экспертизы. – Москва: ИЛ, 1985. – 422 c.

  2. Стрюк, Р. И. Заболевания сердечно-сосудистой системы и беременность / Р.И. Стрюк. – М.: ГЭОТАР-Медиа, 2010. – 308 c.

  3. Бураковский, В И; Бокерия, Л А Сердечно-сосудистая хирургия; М.: Медицина – , 2011. – 752 c.
  4. Иллек, Ян Юрьевич Диагностика и лечение ревматизма у детей / Иллек Ян Юрьевич. – М.: Медицинская литература имени Абу Али ибн Сино, 2013. – 517 c.
Изображение - Повышенное барометрическое давление 489556
Автор статьи: Екатерина Долгих

Добрый день! Меня зовут Екатерина. Я уже более 6 лет работаю в медицинском центре. Считая себя профессионалом, хочу научить всех посетителей сайта решать разнообразные вопросы. Все материалы для сайта собраны и тщательно переработаны с целью донести в доступном виде всю необходимую информацию. Перед применением описанного на сайте всегда необходима ОБЯЗАТЕЛЬНАЯ консультация с профессионалами.

Обо мнеОбратная связь
Оцените статью:
Оценка 4.1 проголосовавших: 104

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here